PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de Google Jackets

An introduction to statistical learning : with applications in R / Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer texts in statistics, 1431-875X ; 103 | Springer texts in statistics, 1431-875X ; 103Editor: New York : Distribuidor: Springer, Fecha de copyright: ©2013Descripción: xiv, 426 páginas : ilustraciones, gráficas ; 24 x 16 cmTipo de contenido:
  • texto
Tipo de medio:
  • sin medio
Tipo de soporte:
  • volumen
ISBN:
  • 9781461471370
Otro título:
  • statistical learning
Tema(s): Clasificación LoC:
  • QA 276  I58 2013
Contenidos:
Introduction -- Statistical learning -- Linear regression -- Classification -- Resampling methods -- Linear model selection and regularization -- Moving beyond linearity -- Tree-based methods -- Support vector machines -- Unsupervised learning.
Resumen: "An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform." --P.[4]
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 276 I58 2013 (Navegar estantería(Abre debajo)) 1 No para préstamo Ingeniería Industrial 037144
Total de reservas: 0

Introduction -- Statistical learning -- Linear regression -- Classification -- Resampling methods -- Linear model selection and regularization -- Moving beyond linearity -- Tree-based methods -- Support vector machines -- Unsupervised learning.

"An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform." --P.[4]

Ingeniería Industrial

NUEVOSINDUSTRIA

  • Universidad del Caribe
  • Con tecnología Koha