An introduction to statistical learning : with applications in R / Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
Tipo de material: TextoSeries Springer texts in statistics, 1431-875X ; 103 | Springer texts in statistics, 1431-875X ; 103Editor: New York : Distribuidor: Springer, Fecha de copyright: ©2013Descripción: xiv, 426 páginas : ilustraciones, gráficas ; 24 x 16 cmTipo de contenido:- texto
- sin medio
- volumen
- 9781461471370
- statistical learning
- QA 276 I58 2013
Tipo de ítem | Biblioteca actual | Biblioteca de origen | Colección | Signatura topográfica | Copia número | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|---|---|
Libros para consulta en sala | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | COLECCIÓN RESERVA | QA 276 I58 2013 (Navegar estantería(Abre debajo)) | 1 | No para préstamo | Ingeniería Industrial | 037144 |
Navegando Biblioteca Antonio Enriquez Savignac estanterías, Colección: COLECCIÓN RESERVA Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA184 L3918 2007 Álgebra lineal y sus aplicaciones / | QA265 B83 Introducción a la programación lineal y al análisis de sensibilidad / | QA 269 A44 Algorithmic game theory / | QA 276 I58 2013 An introduction to statistical learning : with applications in R / | QA 276 .45 .M53 V43 2005 Estadística con Excel / | QA 276 .45 .R3 C91 2013 The R book / | QA 276 .45 .R3 D14 2008 Introductory statistics with R / |
Introduction -- Statistical learning -- Linear regression -- Classification -- Resampling methods -- Linear model selection and regularization -- Moving beyond linearity -- Tree-based methods -- Support vector machines -- Unsupervised learning.
"An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform." --P.[4]
Ingeniería Industrial
NUEVOSINDUSTRIA