PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de cubierta local
Imagen de cubierta local
Imagen de Google Jackets

Machine learning : the new AI / Ethem Alpaydin.

Por: Tipo de material: TextoTextoIdioma: Inglés Series MIT Press essential knowledge seriesEditor: Cambridge, MA : Distribuidor: MIT Press, Fecha de copyright: ©2016Descripción: xv, 206 páginas ; 18 x 13 cmTipo de contenido:
  • texto.
Tipo de medio:
  • sin medio.
Tipo de soporte:
  • volume.
ISBN:
  • 9780262529518 (pbk. : alk. paper)
Tema(s): Clasificación LoC:
  • Q 325.5 A47 2016
Contenidos:
Why we are interested in machine learning -- Machine learning, statistics and data analytics -- Pattern recognition -- Neural networks and deep learning -- Learning clusters and recommendations -- Learning to take actions -- Where do we go from here?
Resumen: A concise overview of machine learning―computer programs that learn from data―which underlies applications that include recommendation systems, face recognition, and driverless cars.Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition―as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as “Big Data” has gotten bigger, the theory of machine learning―the foundation of efforts to process that data into knowledge―has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of “data science,” and discusses the ethical and legal implications for data privacy and security.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA Q 325.5 A47 2016 (Navegar estantería(Abre debajo)) Ejem. 1 No para préstamo (Préstamo interno) Ingeniería Logística 042997
Libros Libros Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac Colección General Q 325.5 A47 2016 (Navegar estantería(Abre debajo)) Ejem. 2 Disponible Ingeniería Logística 042998
Total de reservas: 0

Incluye notas y glosario.

Incluye referencias, otras lecturas e indice.

Why we are interested in machine learning -- Machine learning, statistics and data analytics -- Pattern recognition -- Neural networks and deep learning -- Learning clusters and recommendations -- Learning to take actions -- Where do we go from here?

A concise overview of machine learning―computer programs that learn from data―which underlies applications that include recommendation systems, face recognition, and driverless cars.Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition―as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as “Big Data” has gotten bigger, the theory of machine learning―the foundation of efforts to process that data into knowledge―has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of “data science,” and discusses the ethical and legal implications for data privacy and security.

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local
  • Universidad del Caribe
  • Con tecnología Koha